REPORT No. 893

VELOCITY DISTRIBUTIONS ON TWO-DIMENSIONAL WING-DUCT INLETS BY CONFORMAL MAPPING

By W. PERL and H. E. Moses

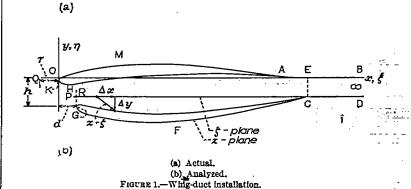
SUMMARY

The conformal-mapping method of the Cartesian mapping function is applied to the determination of the velocity distribution on arbitary two-dimensional duct-inlet shapes such as are used in wing installations. An idealized form of the actual wing-duct inlet is analyzed. The effects of leading-edge stagger, inlet-velocity ratio, and section lift coefficient on the velocity distribution are included in the analysis. Numerical examples are given and, in part, compared with experimental data.

INTRODUCTION

Inlet contours for wing-duct installations, such as those used to conduct cooling air to engines, are generally designed on a more empirical basis than airfoil sections because the geometry of a wing-duct inlet, and hence the determination of its velocity distribution, is more complex than that of an airfoil section. By means of the conformal-mapping method of reference 1, however, the ideal incompressible velocity distribution over two-dimensional wing-duct inlets for arbitrary lift coefficients can be calculated with about the same labor as in the corresponding calculation for an isolated airfoil.

This method was applied to an arbitrary two-dimensional wing-duct-inlet section at the NACA Cleveland laboratory in 1945 and the application is presented herein. The theory is illustrated by numerical examples, which are, in part, compared with experimental data.


ANALYSIS

SYMBOLS

The more important symbols used in the paper are listed here. All velocities are expressed as fractions of the freestream velocity; that is, the free-stream velocity is taken as unity.

- c chord of duct-inlet section
- c_i section lift coefficient
- d horizontal distance between leading edges of duct
- h vertical distance between leading edges of duct inlet.
- r stagger ratio in ζ-plane
- s stagger ratio d/h in z-plane

 $v_{D^{\infty}}$ velocity on surface of duct inlet velocity infinitely far inside duct velocity at duct inlet p plane of circle p plane of duct-inlet section (x+iy) p plane of chord lines $(\xi+i\eta)$

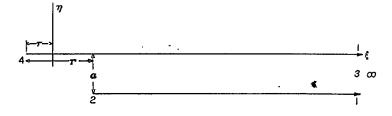
Resistance

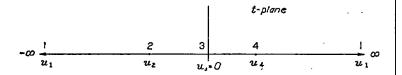
THE CONFORMAL TRANSFORMATION

The actual two-dimensional wing-duct configuration of figure 1(a) is replaced by the contour shown in figure 1(b). The two changes made in the original configuration are (a) removal of the internal flow resistance, and (b) replacement of the streamlines A'B' and C'D' by the parallel, straight, rigid boundaries AB and CD. Change (a) results in a flow field of constant total pressure, and change (b) in a simply connected flow field. The analysis is thereby considerably simplified. Both effects associated with the replaced features. namely, variable inlet-velocity ratio and angle of attack, respectively, can be adequately represented in the flow function for the simplified configuration. For conventional wing-duct installations, the region of interest at the inlet, as regards velocity distribution, is sufficiently far from the region in which changes (a) and (b) were made that their influence on the required velocity distributions is negligible. (See section Illustrative Examples.)

The simplified duct-inlet contour in the z-plane is now conformally mapped onto the staggered semi-infinite parallel straight lines, QAB and PCD, in the ζ -plane (fig. 1 (b)). This mapping is accomplished by the Cartesian mapping function (CMF), defined as the vector distance $z-\zeta$ between conformally corresponding points in the z- and ζ -planes (reference 1); thus

$$z - \zeta = (x - \xi) + i(y - \eta)$$


$$= \Delta x + i\Delta y$$
(1)


The calculation of the CMF is carried out by considering it as a function of the central angle ϕ of the p-plane circle into which the ξ -plane contour can be conformally mapped by a known transformation. Inasmuch as $z-\xi$ is regular on and outside of the z- or ξ -plane contours, by the conformal transformation from ξ to p it is also regular on and outside of the p-plane circle. The real and imaginary parts of the CMF on the circle itself are therefore related by

$$\Delta x(\phi) = -\frac{1}{2\pi} \int_0^{2\pi} \Delta y(\phi') \cot \frac{\phi' - \phi}{2} d\phi'$$
 (2)

$$\Delta y(\phi) = \frac{1}{2\pi} \int_0^{2\pi} \Delta x(\phi') \cot \frac{\phi' - \phi}{2} d\phi' \tag{3}$$

The conformal transformation of the z-plane, staggered semi-infinite parallel lines, into the p-plane circle is carried out in two steps. In the first step a Schwarz-Christoffel transformation takes the z-plane polygon into the real axis of a t-plane such that the upper-half t-plane corresponds to the z-plane. With the correspondence of boundary points indicated in figure 2, this transformation is (reference 2):

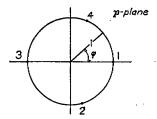


FIGURE 2.—Conformal relation of \(\xi_-, \ t_-, \) and \(p_-\)planes.

$$\frac{d\zeta}{dt} = C_1 \frac{(t-u_2)(t-u_4)}{t} \qquad (4)$$

$$\zeta = C_1 \left[\frac{t^2}{2} - (u_2 + u_4)t + u_2 u_4 \log_e t \right] + C_2$$
 (5)

The six constants given by u_2 , u_4 (real), and C_1 , C_2 (complex) are determined for the orientation and the scale indicated in figure 2 by the six conditions:

- (a) C_1 real (staggered lines horizontal)
- (b) a=1, scale factor in ζ -plane
- (c) r equals desired stagger in ζ -plane, $\zeta(u_2) = r + \tau i$
- (d) $u_2 = -1$, scale factor in t-plane
- (e) upper leading edge in ζ -plane at point $(\tau, 0)$ or $\zeta(u_4) = \tau$ (two conditions)

The constant τ is inserted in condition (e) in order to locate the leading edge of the upper inlet section tangent to the y-axis. By use of the foregoing conditions, equation (5) reduces to

$$\zeta = \frac{1}{\pi} \left(\frac{t}{m} - 1 \right) \left\lceil \frac{m}{2} \left(\frac{t}{m} - 1 \right) + 1 \right\rceil - \frac{1}{\pi} \log_{\epsilon} \frac{t}{m} + \tau \tag{6}$$

The quantity $m = u_4$ is the following function of the stagger ratio r:

$$\pi r = \log_{\epsilon} m + \frac{1}{2} \left(m - \frac{1}{m} \right) \tag{7}$$

Equation (7) is plotted in figure 3.



FIGURE 3.—Stagger constant as a function of stagger in \-plane.

The second step of the desired transformation from f to p consists in mapping the upper-half f-plane onto the region outside of the f-plane unit circle by a bilinear transformation, here taken as

$$t = i\left(\frac{p+1}{p-1}\right) \tag{8}$$

The correspondence of points for equation (8) is indicated in figure 2. The use of other bilinear transformations is discussed in the section Illustrative Examples.

Equations (1), (6), and (8) constitute the conformal transformation from the region around the duct-inlet section in the physical z-plane to the region outside the unit circle p-plane. These equations, with $p=e^{i\phi}$, give for conformally corresponding points on the boundaries

$$t = \cot \frac{\phi}{2}$$

$$x = \xi + \Delta x$$

$$x = \frac{1}{\pi} \left(\frac{1}{m} \cot \frac{\phi}{2} - 1 \right) \left[\frac{m}{2} \left(\frac{1}{m} \cot \frac{\phi}{2} - 1 \right) + 1 \right] -$$

$$\frac{1}{\pi} \log_{\sigma} \frac{1}{m} \left| \cot \frac{\phi}{2} \right| + \Delta x(\phi) + \tau$$

$$(10)$$

$$y = \eta + \Delta y$$

$$y = \Delta y(\phi) \qquad 0 < \phi < \pi \text{ upper-duct inlet section}$$

$$y = \Delta y(\phi) - 1 \qquad \pi < \phi < 2\pi \text{ lower-duct inlet section}$$
(11)

The leading-edge points of the upper-duct- and lower-duct-inlet sections may be defined as the upstream points of tangency of normals from the "chord" lines OA and RC with the duct-inlet contours (fig. 1 (b)). These points may be found as functions of ϕ by minimizing x with respect to ϕ in equation (10). The resulting condition is

$$\frac{d\Delta x}{d\phi} = \frac{\left(\cot\frac{\phi}{2} - m\right)\left(\cot\frac{\phi}{2} + 1\right)}{\pi m \sin\phi} \tag{12}$$

VELOCITY DISTRIBUTION

The velocity distribution on the duct-inlet section is given by

$$v = \left| \frac{dW}{dz} \right| \tag{13}$$

in which the complex potential W is

$$W = \zeta + \frac{A}{\pi} t + \frac{B}{\pi} \log_e t \tag{14}$$

The term ζ represents a uniform flow velocity to the right, of unit magnitude in the ζ -plane, and gives a free-stream velocity of unity in the physical plane. The term $\frac{A}{\pi}t$ represents a uniform flow in the t-plane and corresponds to a circulatory flow around the duct inlet in the physical plane. This term gives the effect of angle of attack on the physical duct-inlet section, although the geometric angle of attack of the section analyzed must remain zero because of its semi-infinite extent. The term $\frac{B}{\pi}\log_{\bullet}t$ represents the flow due

to a source at the origin in the t-plane and gives the desired inlet velocity into the duct in the physical plane.

The quantitative effect of the parameters A and B in the physical plane is determined by evaluation of the complex velocity

$$\frac{dW}{dz} = \left(1 + \frac{A}{\pi} \frac{dt}{d\zeta} + \frac{B}{\pi t} \frac{dt}{d\zeta}\right) \frac{d\zeta}{dz} \tag{15}$$

where, by equation (6),

$$\frac{dt}{d\zeta} = \frac{\pi mt}{(t-m)(t+1)} \tag{16}$$

and, because $z-\zeta$ is regular on and outside of the p-plane circle.

$$z - \dot{\zeta} = \sum_{n=0}^{\infty} \frac{c_n}{v^n} \tag{17}$$

$$\frac{dz}{d\zeta} = 1 - \frac{dp}{d\zeta} \sum_{0}^{\infty} \frac{nc_{n}}{p^{n+1}}$$

$$\frac{dz}{d\zeta} = 1 + \frac{2i}{(t-i)^{2}} \frac{\pi mt}{(t-m)(t+1)} \sum_{0}^{\infty} \frac{nc_{n}}{p^{n+1}}$$
(18)

Infinitely far inside the duct in the physical plane, the correspondence of points is: $z=\infty$, $\zeta=\infty$ by equation (17), t=0 by equation (6), and p=-1 by equation (8). Hence, at this point, $\frac{dz}{d\zeta}=1$ by equation (18), $\frac{dt}{d\zeta}=0$, and $\frac{1}{t}\frac{dt}{d\zeta}=-\pi$ by equation (16); and equation (15) gives for the velocity $v_{D\infty}$ infinitely far inside the duct

$$v_{D\alpha} = 1 - B \tag{19}$$

The velocity distribution on the inner wall of the duct-inlet section becomes almost constant a short distance behind the leading edge. (See section Illustrative Examples.) The inlet velocity v_n is defined as this asymptotic value. The inlet velocity v_n will be different from $v_{D\infty}$ if the height at the inlet is different from the height (unity) infinitely far inside the duct. Infinitely far upstream of the duct-inlet section the correspondence of points is: $z=-\infty$, $\zeta=-\infty$, $t=i\infty$, and p=1, and consequently $\frac{dz}{d\zeta}=1$, $\frac{dt}{d\zeta}=\frac{1}{t}\frac{dt}{d\zeta}=0$. This result holds infinitely far outside the duct in any direction. Hence, the free-stream velocity is by equation (15), unity.

The quantity A may be evaluated either as a function of the stagnation-point locations on the duct inlet or as a function of a suitably defined lift coefficient. In terms of the stagnation points, given by $\frac{dW}{dz}$ =0 in equation (15), and with equations (16) and (9),

$$A = \frac{(m-1) \cot \frac{\phi_{st}}{2} - \cot^2 \frac{\phi_{st}}{2} + m(1-B)}{m \cot \frac{\phi_{st}}{2}}$$
 (20)

$$\cot \frac{\phi_{si}}{2} = \frac{-[1+m(A-1)] \pm \sqrt{[1+m(A-1)]^2 + 4m(1-B)}}{2}$$
(21)

For a given A (and B) equation (21) is a quadratic equation for the two stagnation-point locations. When quantity A is alternatively regarded as a function of lift coefficient c_i , the section lift coefficient is defined in terms of circulation and chord by the well-known isolated-airfoil relation

$$c_i = \frac{2\Gamma}{c} \tag{22}$$

The chord c is defined as the over-all length of the wing-duct-inlet section in the free-stream direction (OE in fig. 1(b)), and the circulation Γ , as the line integral of the velocity over the circuit CFGHKMAEC around the wing-duct installation. This circulation can be evaluated as the sum of the potential difference over the lower surface $\Phi_{\rm G} - \Phi_{\rm C}$, and the potential difference over the upper surface $\Phi_{\rm E} - \Phi_{\rm H}$. The difference of potential over the paths GH and EC is neglected because the velocity is here approximately perpendicular to the path. Hence, by equation (14)

$$\Phi_{\mathrm{E}} \! - \! \Phi_{\mathrm{H}} \! = \! \xi_{\mathrm{E}} \! - \! \xi_{\mathrm{H}} \! + \! \frac{A}{\pi} \left(t_{\mathrm{E}} \! - \! t_{\mathrm{H}} \right) \! + \! \frac{B}{\pi} \log_{s} \frac{t_{\mathrm{E}}}{t_{\mathrm{H}}}$$

$$\Phi_{\rm G} - \Phi_{\rm C} = \xi_{\rm G} - \xi_{\rm C} + \frac{A}{\pi} (t_{\rm G} - t_{\rm C}) + \frac{B}{\pi} \log_e \frac{t_{\rm G}}{t_{\rm C}}$$

and

$$\Gamma = (\Phi_{E} - \Phi_{H}) + (\Phi_{G} - \Phi_{C})$$

$$\Gamma = (\xi_{E} - \xi_{C}) - (\xi_{H} - \xi_{G}) + \frac{A}{\pi} [(t_{E} - t_{C}) - (t_{H} - t_{G})] + \frac{B}{\pi} \log_{e} \left(\frac{t_{E}t_{G}}{t_{H}t_{C}}\right)$$
(23)

Finally, when equation (23) is solved for A, and Γ is expressed in terms of c_i by equation (22) with $c=x_{\rm E}$,

$$A = \frac{\pi \left[\frac{c_{i}}{2} x_{E} - (\xi_{E} - \xi_{C}) + (\xi_{H} - \xi_{G}) \right] - B \log_{\delta} \left(\frac{t_{E} t_{G}}{t_{H} t_{C}} \right)}{(t_{E} - t_{C}) - (t_{H} - t_{G})}$$
(24)

The quantities x, ξ , and t at the various points indicated in equation (24) are given in terms of the corresponding central angle ϕ by equations (9) and (10). The various ϕ values are known when the conformal transformation of the duct inlet has been carried out.

For a CMF $\Delta x(\phi)$, $\Delta y(\phi)$, stagger constant m, and the constants A and B corresponding to the lift coefficient and the inlet-velocity ratio, the velocity distribution on the duct-inlet contour is given by the absolute magnitude of dW/dz on the boundary. On the boundary, $p=e^{i\phi}$,

$$\frac{dz}{d\xi} = 1 + \frac{d(z - \xi)}{d\xi}$$

$$\frac{dz}{d\xi} = 1 + \frac{d(\Delta x + i\Delta y)}{d\phi} \frac{d\phi}{dt} \frac{dt}{d\xi}$$
(25)

Substitution of equations (9), (16), and (25) in equation (15) yields for the velocity distribution on the duct-inlet section

$$v = \frac{\left(\cot\frac{\phi}{2} - m\right)\left(\cot\frac{\phi}{2} + 1\right) + mA\cot\frac{\phi}{2} + mB}{\pi m \sin\phi} \sqrt{\left[\frac{\left(\cot\frac{\phi}{2} - m\right)\left(\cot\frac{\phi}{2} + 1\right)}{\pi m \sin\phi} - \frac{d\Delta x}{d\phi}\right]^{2} + \left(\frac{d\Delta y}{d\phi}\right)^{2}}$$

PROCEDURE FOR CALCULATION OF CMF

The calculation of the CMF $\Delta x(\phi)$, $\Delta y(\phi)$, and stagger constant m for a given duct-inlet section may be carried out by a process of successive approximations similar to that of reference 1. The steps are outlined as follows:

- 1. The duct-inlet section is drawn in normal form (fig. 1 (b)). Point O is the origin and the scale is such that the normal distance between the chord lines OA and RC is unity. The stagger s=d/h of the duct inlet is, in general, different from the stagger r of the chord lines.
- 2. A set of abscissas $x(\phi)$ is calculated for a standard set of values of ϕ by equation (10). The $\Delta x(\phi)$ and τ may be that of a previous example or, at worst, equal to zero. The value of m may be taken from figure 3 for r=s.
- 3. The ordinates y of the duct-inlet contour corresponding to the abscissas x of step 2 are measured. The function $\Delta y(\phi)$ is thereby determined (equation (11)).
- 4. The function $\Delta x(\phi)$ is calculated from $\Delta y(\phi)$ by equation (2).
- 5. The functions $\Delta x(\phi)$ of step 4, $\Delta y(\phi)$ of step 3, and m of step 2 constitute by equations (10) and (11) a duct-inlet section of which the difference in abscissas between the leading edges is, in general, other than that specified. The constant m is therefore adjusted to make this difference equal to the specified value. To this end equation (12) (corresponding to the values ϕ_1 and ϕ_2 for the two extremities) and the equation for the difference d in the leading-edge abscissas

$$x(m, \phi_1) - x(m, \phi_2) = d$$
 (27)

obtained from equation (10), can be solved simultaneously for ϕ_1 , ϕ_2 , and m. A more convenient procedure is one of iteration. Initial values ϕ_1 and ϕ_2 for minimum x are graphically obtained by plotting equation (10) in the necessary regions. A value of m is then obtained from equation (27). With this value of m, values of ϕ_1 and ϕ_2 are again graphically found for minimum x by equation (10). The process is continued until ϕ_1 , ϕ_2 , and m do not change appreciably in successive calculations. Finally, a constant τ is so chosen that $x(\phi_1)=0$. The derived inlet section is now in normal form.

- 6. The values of m and τ derived in step 5 and $\Delta x(\phi)$ and $\Delta y(\phi)$ of steps 4 and 3 yield a shape by equations (10) and (11), which can be compared with the given one. If the agreement is not sufficiently close, steps 3 to 5 are repeated.
 - 7. The velocity distribution is obtained by substitution

of the final m and the derivatives $\frac{d\Delta x}{d\phi}$ and $\frac{d\Delta y}{d\phi}$ of the final

CMF in equation (26). The value of B is chosen to produce the desired inlet velocity (the velocity given by equation (26) on the inside walls of the duct-inlet section). The value of A is chosen to locate the stagnation points in the desired manner (equation (21)) or for a desired nominal lift coefficient (equation (24)).

The inverse problem, namely, the calculation of the ductinlet section to produce a prescribed velocity distribution, may be treated by the methods given in references 1 and 3.

ILLUSTRATIVE EXAMPLES

As a first application of the theory, the symmetrical wingduct installation (m=1.0), on which pressure distributions were measured in reference 4 (shape 9), was analyzed. The installation is shown in figure 4 and the ordinates are listed in table I. The trailing-edge portions were actually flaps

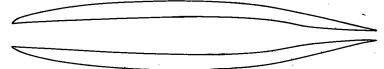


FIGURE 4.—Symmetrical duct-inlet section (reference 4, shape 9). m=1.0.

by which the inlet velocity was varied. The scale used for the calculation was such that the distance between trailing edges was unity, as assumed in the theory. An evenly spaced set of 48 ϕ -values was taken of which only 24 were actually used because of the symmetry. Of these 24 values, 21 were included in the front 8 percent of the chord. This portion of the duct inlet was therefore the portion effectively analyzed. The leading-edge portion is plotted in figure 5 to a scale such that the vertical distance between the leading edges, the entrance height h, is unity.

Figure 5.—Leading edge of symmetrical duct-inlet section with $\epsilon=0$ and m=1.0.

The CMF obtained after four approximations (which produced coincidence of the specified shape and the derived shape) is listed in table II and plotted in figure 6. In the

Figure 6.—Cartesian mapping function for duct-inlet sections.

first two approximations, the airfoil was drawn to an abscissa scale of 25 inches for the chord and had an ordinate scale four times the abscissa scale. The last two approximations were made for the airfoil drawn to a scale such that the chord length was 100 inches; the ordinate scale was the same as the abscissa scale. The values of Δx were computed, for the most part, by the method of numerical evaluation of conjugate functions developed in appendix C of reference 5. Near 0° and 180°, because of the rapid variation of $\Delta y(\phi)$ in these regions (fig. 6), Δx was obtained by plotting the integrand of equation (2) and graphical integration. The values of the CMF graphically obtained are indicated in table II. The velocity distributions, also listed in table II, were calculated for inlet-velocity ratios v_n of 0, 0.5, and 1.0 and for nominal lift coefficients of 0, 0.3, 0.6, 0.9, and are shown in figure 7. The derivatives of the CMF used in calculating the velocity distribution were obtained by graphical measurement from the CMF.

The velocity distribution for $c_i=0$ and $v_a=0.5$ satisfactorily checked that experimentally obtained in reference 4 for $c_i=0$ and $v_a=0.473$ (fig. 7(c)). The reason for the discrepancy between theoretical and experimental inlet-velocity ratios at which the velocity distributions agreed is not clear. Possible reasons are the changes in downstream shape required by the analysis and a difference in the method of specification of inlet-velocity ratio. The theoretical inlet velocity v_a has been defined as the constant value approached

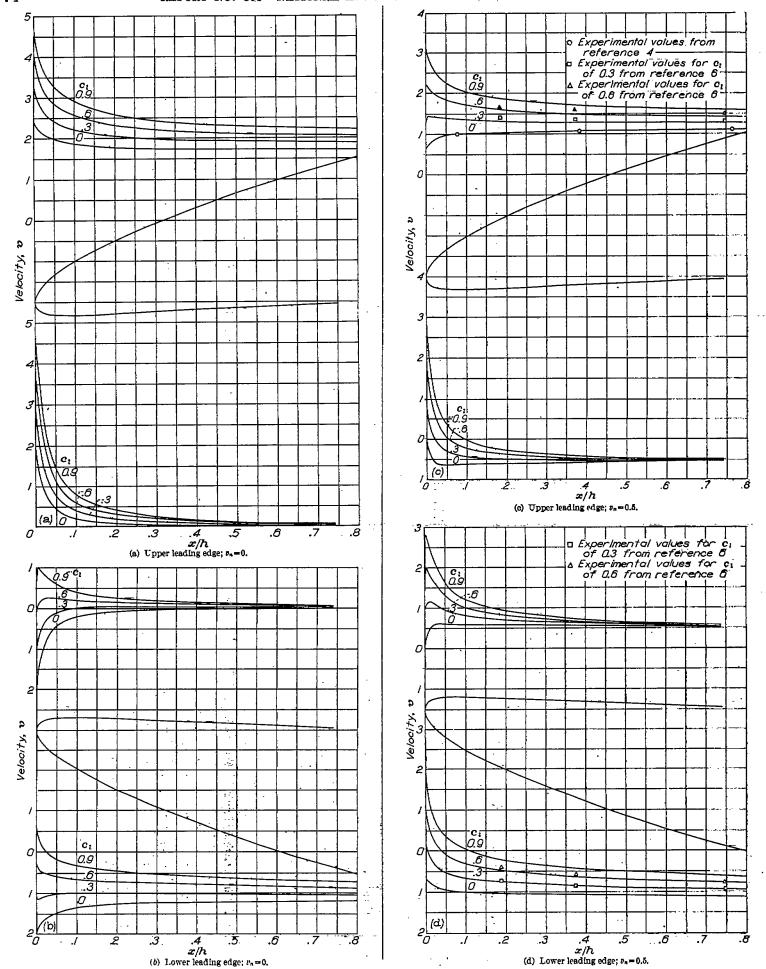
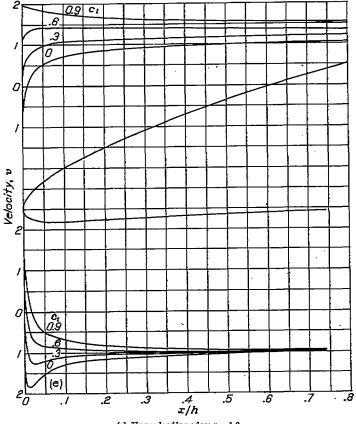



Figure 7.—Velocity distribution on upper and lower leading edges of symmetrical duct-inlet section with z=0 and m=1.0.

(e) Upper leading edge; va=1.0.

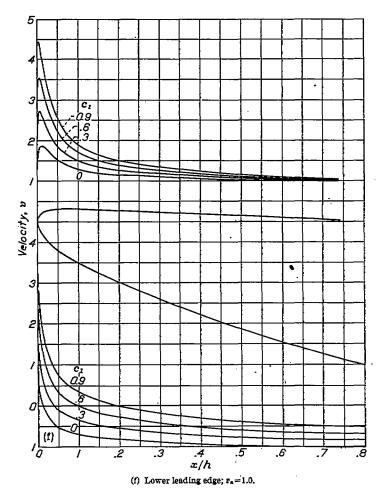


Figure 7.-Concluded.

by the velocity on the wall of the duct at a short distance behind the leading edge. The experimental determination of the inlet-velocity ratio in reference 4 was not made entirely clear.

The velocity distributions for the c_i values 0.3 and 0.6 were also compared with the experimental data of reference 6 obtained for the same duct-inlet section at various angles of attack at a Mach number of 0.20. The comparison (given in figs. 7 (c) and 7 (d)), indicates the validity of the theoretical analysis, particularly of the derivation of the nominal section lift coefficient c_i .

The feature of the velocity distribution shown in figure 7 that should be particularly noted is the closeness to the leading edge (well within the 8-percent of the chord length that was studied) at which the greatest changes in velocity distribution occur as a result of a change in operating conditions v_n or c_l . This fact justifies and requires the analysis of a region very close to the inlet, that is, the concentration of the chosen set of ϕ -points close to the inlet.

In order to illustrate the use of the theory for the staggered case, $m \neq 1.0$, the CMF $\Delta x(\phi)$ and $\Delta y(\phi)$ for the symmetrical inlet was used with the m-values 1.5 and 2.0. These shapes and velocities are shown in figures 8 to 11 and are given in tables III and IV, respectively. In the graphs of the duct inlets, the ordinates have been so adjusted that the upper and lower leading edges are at 0.5 and -0.5, respectively. Although the derived shapes are different from the original

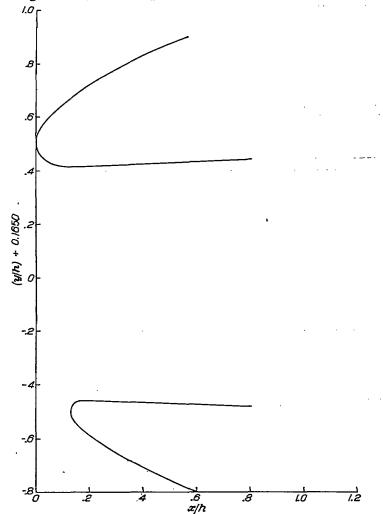
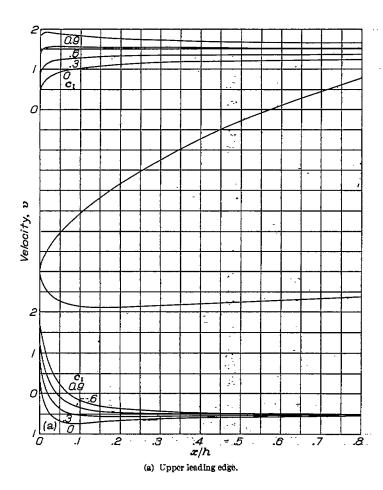



Figure 8.—Leading edge of nonsymmetrical duct-inlet section with s=0.132 and m=1.5.

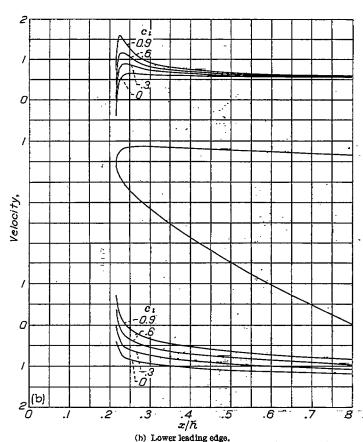


Figure 9.—Velocity distribution on upper and lower leading edges of nonsymmetrical duct-inlet section with s=0.132 and m=1.5. $v_n=0.5$.

unstaggered one, evidently the effect of stagger is to reduce the velocity peaks for positive lift coefficients.

When a more highly staggered inlet was derived for m=3.0 by the foregoing method, the upper contour of the resulting inlet was found to be excessively thick. The points in the physical plane corresponding to $\Delta x(\phi)$, $\Delta y(\phi)$, and m=3.0 were therefore rearranged by using the same Δx and Δy , regarded, however, as functions of θ , with θ related to ϕ by the bilinear transformation (see appendix B of reference 5)

$$p = \frac{p' + \frac{n-1}{n+1}}{\frac{n-1}{n+1} p' + 1} \tag{28}$$

in which, on the p- and p'-plane unit circles corresponding to the duct-inlet contour,

$$p = e^{t\phi}, p' = e^{t\theta} \tag{29}$$

The choice n=1.5 produced the shape shown in figure 12. The ordinates are listed in table V. It should be noted that the use of an auxiliary bilinear transformation (equation (28), for example) provides a very flexible and convenient method of distributing a given number of mapping points in the optimum manner. The auxiliary bilinear transformation may also be used to smooth out a sharply peaked function of ϕ to make its conjugate more easily calculable.

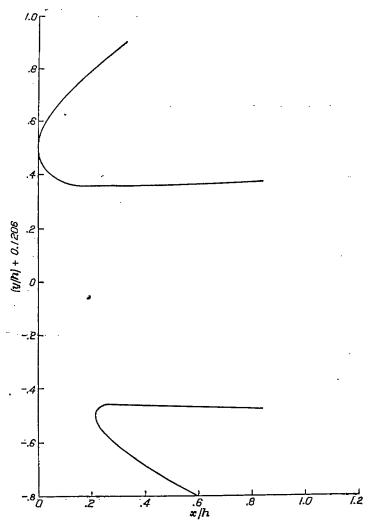
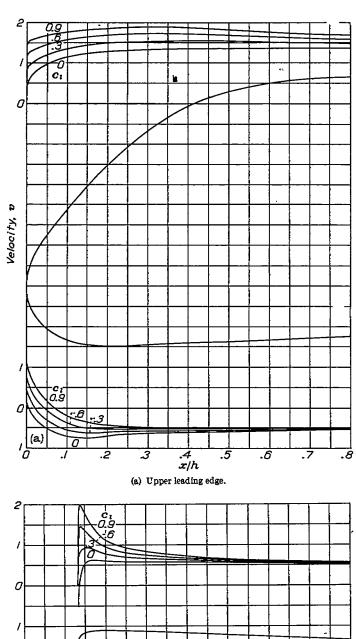



Figure 10.—Leading edge of nonsymmetrical duct-inlet section with s=0.215 and m=2.0.

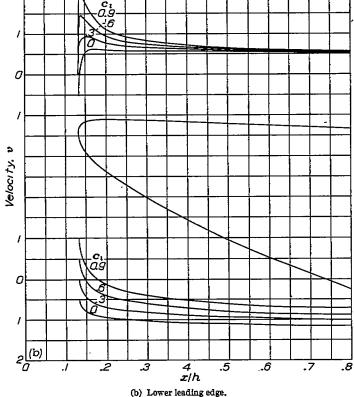


FIGURE 11.—Velocity distribution on upper and lower leading edges of nonsymmetrical duct-inlet section with s=0.215 and m=2.0. $s_n=0.5$.

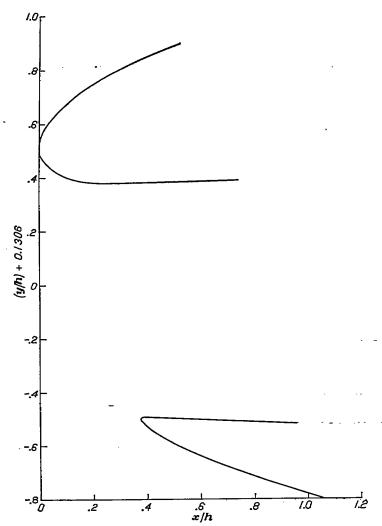
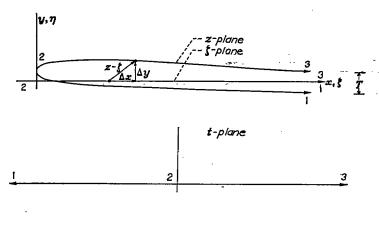


FIGURE 12.—Leading edge of nonsymmetrical duct-inlet section with s=0.280 and m=3.0.

CONFORMAL MAPPING OF LEADING-EDGE REGIONS


The requirement that the velocity distribution need be accurately known only near the leading edges permitted the great simplification in the mapping consisting in replacement of the doubly connected region by a simply connected region. The modification of the contour shape far behind the leading edge did not appreciably alter the velocity distribution at the leading edges. Corresponding simplifications can be effected in other problems involving conformal mapping of aerodynamic shapes where only the leading-edge region is of interest.

Thus, for example, the leading-edge region of an isolated airfoil can be regarded as joining a semi-infinite shape, as indicated in figure 13. The mapping of such a contour into a circle is quite simple. The leading-edge contour, z-plane, is mapped onto a semi-infinite chord line, \(\zeta\)-plane, by the CMF

$$z - \zeta = \Delta x + i\Delta y = (x - \xi) + i(y - \eta) \tag{30}$$

The semi-infinite chord line is mapped onto an infinite straight line, t-plane, by

$$\zeta = t^2 \tag{31}$$

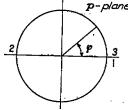


FIGURE 13.—Mapping of leading-edge region for isolated airfoils.

and, in turn, the t-plane contour is mapped onto a unit circle by a bilinear transformation, such as

$$t = i \left(\frac{p+1}{p-1} \right) \tag{32}$$

On the unit circle $p=e^{i\phi}$, equations (30) to (32) give for the coordinates x and y of the leading-edge contour in the physical plane

$$x = \cot^2 \frac{\phi}{2} + \Delta x(\phi) \tag{33}$$

$$y = \Delta y(\phi) \tag{34}$$

The mapping of the leading-edge contour by equations (33) and (34) involves little more than the calculation of conjugates.

The velocity distribution is obtained from the complex potential

$$W = \zeta + At$$
 (35)

in which the term f represents the uniform free-stream flow and the term At a circulatory flow around the leading edge. On the leading-edge contour the velocity distribution |dW/dz| becomes

$$v = \frac{\left(1 + \frac{A}{2}\tan\frac{\phi}{2}\right)\cot\frac{\phi}{2}\csc^2\frac{\phi}{2}}{\sqrt{\left(\cot\frac{\phi}{2}\csc^2\frac{\phi}{2} - \frac{d\Delta x}{d\phi}\right)^2 + \left(\frac{d\Delta y}{d\phi}\right)^2}}$$
(36)

A similar development can be made for a cascade of leadingedge regions, which bears the same relation to a cascade of airfoils as the leading-edge region just treated bears to the isolated airfoil.

SAW-TOOTH FUNCTION AS INITIAL APPROXIMATION

In the mapping of semi-infinite contours, it may be required, or it may be simpler, to consider a contour for which the thickness at infinity is finite, as indicated in figure 13. The ordinate function $\Delta y(\phi)$ will in this case be discontinuous at the value of ϕ corresponding to the point at infinity on the physical-plane contour. The calculation of the CMF for such a contour will be simplified if the Cartesian mapping function $\Delta x + i\Delta y$ is considered as the sum of two component Cartesian mapping functions $\Delta_1 x + i\Delta_1 y$ and $\Delta_2 x + i\Delta_2 y$, of which $\Delta_1 x + i\Delta_1 y$ is analytically known and represents a contour with the same thickness at infinity.

Thus, if the thickness at infinity of the contour in the physical plane is T, the "first harmonic" saw-tooth function (fig. 14)

$$\Delta_1 y(\phi) = \frac{T}{\pi} \left(\frac{\pi}{2} - \frac{\phi}{2} \right) \tag{37}$$

will yield a shape with this thickness. The function $\Delta_1 x(\phi)$ conjugate to $\Delta_1 y(\phi)$ may be simply obtained from the integral relation for the conjugate derivative (equation (C3) of reference 5)

$$\frac{d\Delta x(\phi)}{d\phi} = -\frac{1}{4\pi} \int_0^{2\pi} \frac{\Delta y(\phi') - \Delta y(\phi)}{\sin^2 \frac{\phi' - \phi}{2}} d\phi' \tag{38}$$

Substitution of equation (37) in equation (38) and integration (using integration by parts) yields

$$\frac{d\Delta_1 x}{d\phi} = \frac{T}{2\pi} \cot \frac{\phi}{2} \tag{39}$$

which by integration gives for $\Delta_1 x$

$$\Delta_1 x = \frac{T}{\pi} \log_e \sin \frac{\phi}{2} \tag{40}$$

The ordinate function derivative is evidently

$$\frac{d\Delta_1 y}{d\phi} = -\frac{T}{2\pi} \tag{41}$$

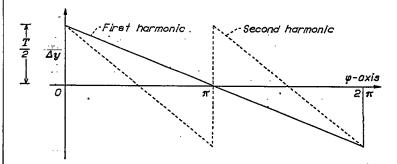


FIGURE 14.—Saw-tooth ordinate functions.

The CMF for a "second harmonic" saw tooth (fig. 14) corresponding to a duct-inlet section with thickness T (of each component contour) at infinity may be obtained from that of the first harmonic saw-tooth function by replacing $\phi/2$ in equations (37), (39), and (40) by ϕ and by doubling the derivatives. Thus, for the second harmonic saw-tooth function

$$\Delta_{1}y = \frac{T}{\pi} \left(\frac{\pi}{2} - \phi\right) \qquad 0 < \phi < \pi$$

$$\Delta_{1}y = \frac{T}{\pi} \left(\frac{3\pi}{2} - \phi\right) \qquad \pi < \phi < 2\pi$$

$$(42)$$

$$\frac{d\Delta_1 y}{d\phi} = -\frac{T}{\pi} \tag{43}$$

$$\Delta_1 x = \frac{T}{\pi} \log_{\theta} \sin \phi \tag{44}$$

$$\frac{d\Delta_1 x}{d\phi} = \frac{T}{\pi} \cot \phi \tag{45}$$

The duct-inlet shapes corresponding to the second harmonic saw-tooth CMF have been calculated by equations (10) and (11) with m=1.0 (no stagger) and for T=0.1, 0.2, and 0.3. The contours are shown in figure 15. For these shapes, the velocity infinitely far inside the duct is, by equations (43), (45), and (26) with $\phi = \pi$,

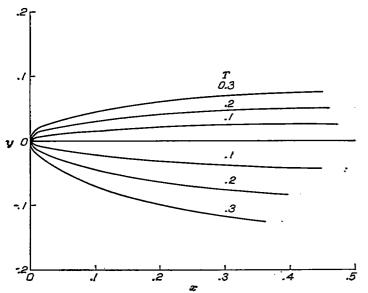


FIGURE 15.—Leading-edge shapes for duct inlet using the second harmonic saw-tooth function. s=0; m=1.

$$v_{D\,\infty} = \frac{1 - B}{1 - T} \tag{46}$$

which, when compared with equation (19), shows the effect of narrowing the duct at infinity.

AIRCRAFT ENGINE RESEARCH LABORATORY, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, CLEVELAND, OHIO, April 1, 1947.

REFERENCES

1. Mutterperl, William: The Conformal Transformation of an Airfoil Mutterperi, William: The Conformal Transformation of all Airfold into a Straight Line and Its Application to the Inverse Problem of Airfoil Theory. NACA ARR No. L4K22a, 1944.
 Kellogg, Oliver Dimon: Foundations of Potential Theory. Ch. XII, sec. 13, ex. 8, Julius Springer (Berlin), 1929, p. 375.
 Mutterperi, William: A Solution of the Direct and Inverse Potential Problems for Arbitrary Cascades of Airfolls. NACA ARR No. L4K22b, 1044.

No. L4K22b, 1944.

4. von Doenhoff, Albert E., and Horton, Elmer A.: Preliminary Investigation in the NACA Low-Turbulence Tunnel of Low-Drag Airfoil Sections Suitable for Admitting Air at the Leading

Edge. NACA ACR, July 1942.

5. Perl, W., and Moses, H. E.: Velocity Distributions on Symmetrical Airfoils in Closed Tunnels by Conformal Mapping. NACA TN

No. 1642, 1948.

6. Smith, Norman F.: High-Speed Investigation of Low-Drag Wing Inlets. NACA ACR No. L4I18, 1944.

TABLE I—ORDINATES OF SYMMETRICAL DUCT INLET [Reference 4, shape 9]

Station (percent chord from leading edge)	Ordinate of outer surface (measured from center line of channel) (percent chord)	Ordinate of inner surface (measured from center line of channel) (percent chord)
0 25 	8. 860 8. 860 8. 856 8. 2745 6. 1652 7. 4058 8. 856 8.	3.34 3.07 3.05 3.05 3.07 3.18 3.26 3.26 3.26 4.57 4.90 5.10 4.94 4.27 2.54 1.55

TABLE II—ORDINATES AND VELOCITY DISTRIBUTIONS FOR SYMMETRICAL DUCT INLET WITH 8=0 AND m=1.0

[r=0; \phi_u=75.00°; \phi_c=285.00°; \phi_c=353.12°; \phi=2.4800]

	.		1	! .	Velocity, v												
(deg) x/h	(#/k)+ 0.2011	Δ#	Δy	(v=0; B=1.00000)		(v=0.5; B=-0.38907)			(v _a =1.0; B=-1.55000)								
			(ordinate)	(ordinaze)		c:=0 A=0	0.3 0.58494	0.6 1.16989	0.9 1.75483	0	0.3 0.58494	0.6 1.16989	0.9 1.75488	0	0,3 0,58494	0.6 1.16989	0.9
Upper duct inlet section																	
0X7.5:123 4 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 22 23 24	12, 3,640 2, 8117 1, 0,887 5162 2,490 1225 0,652 0,0221 0,013 0,136 0,125 0,471 1,07	0,2041 86f22 1,2098 9259 7713 6695 6121 5708 6410 5105 4996 4858 4766 4773 4690 4705 47786 47786 47786 47786 47786 4789 4789 4789 4789 4789 4789 4789 4789	-2,8592 -5,1796 -1,2595 -5144 -2205 -1300 -0546 -0115 -0490 -0399 -1000 -1807 -1623 -1879 -2208 -2355 -3168 -3685 -4879 -5131 -6195 -7400 -9385 -1,2595 -3,0449	9. 1. 6534 2. 5076 1. 8018 1. 4174 1. 1644 1. 0217 9190 28448 7639 7078 6859 6669 6669 6697 6773 6859 6697 6773 8849 6796 6776 7773 8849	1. 6000 1. 0697 1. 1719 1. 1944 1. 2238 1. 2535 1. 8460. 1. 4799 1. 6354 1. 8827 2. 0239 1. 7745 1. 2056 7651 4713 2091 1961 1305 0858 0648 0324 0172 0069 0017	11 6000 1. 11(77 1. 2622 1. 3334 1. 4157 1. 5025 16 6721 1. 9068 2. 1877 2. 6185 2. 6848 1. 9175 2. 6849 1. 2754 2. 6849 1.	1. 0000 1. 1517 1. 8524 1. 4724 1. 6075 1. 7514 1. 9982 2. 3337 2. 7400 3. 3544 8. 5951 2. 6161 1. 7857 1. 1898 2. 416 2. 2280 2. 2416 1. 2280 2. 2416 1. 0679 0. 0318	1. 0000 1. 1927 1. 4427 1. 6113 1. 7993 2. 0003 2. 3243 2. 7005 3. 2922 4. 0902 4. 7493 4. 5063 3. 2924 4. 7493 4. 5063 3. 2926 1. 5440 1. 0845 1. 0845 1. 0845 2. 4401 1. 3353 2. 2447 1. 1685 0. 0884 0. 0488	1, 0000 1, 0038 1, 1487 1, 1288 1, 1018 1, 0529 1, 0252 1, 025	1,0000 F. 1043 1,2240 1,2240 1,2058 1,3018 1,3018 1,305 1,4305 1,4509 1,2770 7891 2361 1,364 2813 3896 4222 4601 4875 5071 5384 5381 1,3891	1,0000 1,1454 1,8242 4,067 1,4854 1,5508 1,6774 1,855 1,9823 2,1868 2,1868 1,993 9414 4039 1,0780 1,	\$ 0000 \$ 1863 1 4145 1 5467 1 6773 2 0035 2 0035 2 2005 2 5261 2 9226 3 0940 2 6066 1 6467 9142 4372 1540 1250 1250 1250 1450 1450 1450 1450 1450 1450 1450 14	1, 0000 1, 0580 1, 1201 1, 0739 9998 8852 7571 5622 2454 2807 1, 0150 1, 7055 1, 8687 1, 7716 1, 5697 1, 4090 1, 3038 1, 12378 1, 1483 1, 1190 1, 19900 1, 0904 9985	1. 0000 1. 0000 1. 2104 1. 2129 1. 1916 1. 1841 1. 0832 9831 7927 4751 1. 085 1. 2613 1. 2613 1. 2105 1. 1651 1. 0646 1. 0648 1. 0648 1. 0482 1. 06395 9835	1,8000 1,1400 1,2008 1,3518 1,3834 1,3834 1,4093 1,4093 1,4100 1,2110 8020 1,151 4,583 7,510 8,512 8,551 9,282 9,467 9,610 9,774 9,610 9,774 9,610 9,624	1. 0000 1. 1810 1. 3906 1. 4908 1. 6719 1. 6719 1. 7354 1. 8422 1. 9022 1. 9488 1. 7104 1. 0263 2470 2407 4920 6236 6236 6236 8673 9007 9388 9119	
	· · · · · · · · · · · · · · · · · · ·					,	Lower du	ct-inlet sec	tion								
24 25 26 27 28 30 30 31 31 32 33 34 35 36 37 28 39 40 41 42 44 44 44 45 46 47	0.7401 . 5227 . 8912 . 8067 . 2268 . 1842 . 1885 . 1034 . 0718 . 0471 . 0259 . 0136 . 0033 . 0017 . 0041 . 0221 . 1225 . 490 . 5162 . 1 1087 . 2 8117 . 1 2 8540	-0. 2011 4950 4943 4769 47736 4705 4690 4713 4766 4958 5165 5410 5708 6121 6925 7713 9259 1, 2096 8862	* 8. 0449 * 1. 2595 . 9389 . 7400 . 6195 . 5131 . 4879 . 3685 . 3168 . 2555 . 2269 . 1622 . 1307 . 1080 . 0699 . 0400 . 0115 	0 7806 - 7806 - 7040 - 6849 - 6659 - 6716 - 7078 - 7420 - 78397 - 10217 - 11644 - 14174 - 18018 - 2,5076 - 1,0814	0 .0017 .0069 .0172 .0324 .0543 .0838 .1305 .1305 .1741 .2056 .17745 .2.0239 .1.2450 .1.2535 .1.2535 .1.2535 .1.1719 .1.0607	0 . 0184 . 0227 . 0388 . 0389 . 0389 . 0389 . 0389 . 0389 . 0286 . 0275 . 1489 . 1489 . 1 . 1489 . 1 . 0881 . 1 . 0888 . 0 . 0 . 0888 . 0 . 0888 . 0 . 0888 . 0 . 0888 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	0 0284 0542 0542 0839 1091 1329 1565 1791 2246 2246 2070 4109 5308 625 637 7657 7657 8402 9165 9914 9877	0 0484 0847 1844 1790 2266 2776 3399 4865 7639 9100 9663 7014 1992 3676 5684 7075 9487	1, 8891 , 5482 , 5485 , 5889 , 5948 , 6086 , 6210 , 6314 , 6415 , 6415 , 6417 , 4091 , 1212 , 3886 , 7181 , 7181 , 7182 , 9800 , 1, 0252 , 1, 10539 , 1, 1437 , 1, 1438 , 1, 1438	1. 3891 .5582 .5740 .6365 .6656 .6944 .7297 .7696 .8196 .8992 .8196 .8998 1. 1271 1. 1743 1. 0314 .5399 .2208 .3259 .5531 .6991 .8040 .9100 .9893 .1, 0535 .1, 0535 .1, 0535 .1, 0535 .1, 0535	1: \$891 .5732 .6045 .6870 .7363 .7888 .8508 .9244 1.0182 1.1560 1.8590 1.6374 1.8795 1.9417 1.4484 .7567 .2264 .1282 .3730 .6551 .8509 .8538 .9417 .7667 .2264 .1882 .8780 .8658 .8780 .8658 .8780 .8658 .8780 .8658 .8780 .8658 .8780 .8658 .8780 .8658	1. 8891 . 5853 . 6350 . 7375 . 8077 . 8017 . 9719 1. 2169 1. 2169 1. 4163 1. 7183 2. 1477 2. 5842 2. 3584 1. 4925 7796 . 3007 . 468 . 3084 . 7119 . 8720 . 5284 . 7119 . 8720 . 9403	2, 5500 .9985 1.0034 1.0990 1, 1190 1.1483 1.1889 1.2378 1.3033 1.4090 1.7717 1.8687 1.7055 1.0150 2607 .2454 .8622 .7571 .8862 .7571 .8862 .7571 .8862 .7571 .8862 .7571 .8862 .7571 .8862 .7571 .8862 .7688 .7688 .7688 .7688 .7688 .7688 .7688 .7688	2, 5500 1, 0185 1, 0340 1, 1407 1, 1897 1, 2419 1, 3100 1, 3926 1, 5024 1, 6708 1, 9239 2, 2819 2, 5789 2, 2819 2, 5789 1, 9234 9066 3069 1, 3069 1, 3	2. 5500 1. 0226 1. 0645 1. 1910 1. 2605 1. 3351 1. 4311 1. 5472 2. 2825 2. 7923 3. 2792 3. 2792 3. 5261 2. 8319 1. 7326 3. 5291 2. 2916 3. 5291 3. 529	2. 5500 1. 0436 1. 0436 1. 0436 1. 2416 1. 5313 1. 4292 1. 5523 1. 7021 1. 8937 2. 1944 2. 6473 2. 4834 4. 4384 4. 4384 3. 7413 2. 4834 4. 4114 7185 5. 2213 6. 570 8. 494 8. 495 8. 495	

[.] Obtained by graphical integration.

TABLE III—ORDINATES AND VELOCITY DISTRIBUTIONS FOR NONSYMMETRICAL DUCT INLET WITH s=0.132 AND m=1.5

 $[\tau\!=\!-0.0341;\,\phi_{\rm H}\!=\!109^{\circ};\,\phi_{\rm G}\!=\!289.81^{\circ};\,\phi_{\rm K}\!=\!6.51^{\circ};\,\phi_{\rm C}\!=\!353.12^{\circ};\,h\!=\!2.6667]$

φ (deg)	x/h	(y/h)+ 0,1650 (ordinate)	Velocity, v ($v_n = 0.5$; $B = -0.38907$)					
(deg)			ci=0 A=0.01518	0,3 0,38901	0.6 0.76285	0,9 1,13668		
	Upper duot-inlet section							
0 x 7. 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 12 20 21 22 23 24	© 6. 3926 1. 2849 4267 1. 693 0. 0569 0 0057 0. 0159 0 0455 0. 0455 0. 0465 1163 11804 12804 2. 2055 3. 3875 4607 5050 5010 ∞	0. 1650 . 7850 1. 1053 8407 . 6965 . 6016 . 5481 . 5096 . 4818 . 4590 . 4433 . 4304 . 4219 . 4169 . 4169 . 4161 . 4161 . 4161 . 4190 . 4219 . 4290 . 4390 . 1650	1. 0000 1, 0751 1, 2487 1, 2072 1, 1023 9625 7539 4219 0418 2706 5018 6440 7169 7479 7296 6740 6561 6406 6252 6128 5985 5516 5469 1, 3891	1.0000 1.1162 1.3610 1.3709 1.3316 1.2699 1.3316 1.1475 8743 4993 1.1475 8338 4593 5507 5600 5664 5663 5683 5687 5700 5699 5673 5324 1.3891	1,0000 1,1871 1,4533 1,5346 1,5608 1,5753 1,5712 1,3207 1,3207 29451 5814 2264 0236 2018 3225 3022 4315 4586 4813 4996 5134 5267 5361 5188 5279 1,3891	1. 0000 1. 1985 1. 5556 1. 5556 1. 6988 1. 7900 1. 8817 1. 9349 1. 7790 1. 3968 9820 5905 2866 0558 0558 1112 2235 2975 3509 3939 4290 4576 4837 5049 4942 5183 1. 3891		
		Lower	luot-inlet s	ection				
24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 41 42 44 45 46	0.8062 6088 4885 4088 3492 2995 2576 2276 2276 1778 1774 1462 1324 1325 1435 1445 2993 4687 8287 1,8893 7,6008	-0. 2100 4840 4740 4090 4669 4661 4697 4683 4699 4754 4883 5040 5268 5546 7415 8887 11508 8800	1. 3891 .5308 .5373 .5775 .5843 .5857 .6910 .6073 .6198 .6322 .6187 .4874 .2085 .1844 .5214 .7311 .8833 .9659 .1 1048 .1 1048	1. 3891 5495 5571 6105 6309 6607 7046 7406 7404 8733 9830 7658 9830 7658 3848 9830 7658 1819 9837 11, 1202 11, 1202	1. 3891 5592 5760 6486 6775 7127 7567 8081 8740 9714 1. 1143 1. 2915 1. 3887 1. 3827 1. 9540 4840 9837 2128 4336 7651 1. 0334 9945	1. 3891 . 5689 . 5967 . 6766 . 7241 . 7748 . 8374 . 9116 1. 0073 1. 1073 1. 1073 1. 1024 1. 8394 1. 8394 1. 8292 . 9860 . 4911 . 1224 . 1055 . 7866 . 7866 . 9660		

TABLE IV—ORDINATES AND VELOCITY DISTRIBUTIONS FOR NONSYMMETRICAL DUCT INLET WITH s=0.215 AND m=2.0

 $[r = -0.0374; \, \phi_{\rm H} = 114.98^{\rm o}; \, \phi_{\rm G} = 289.12^{\rm o}; \, \phi_{\rm E} = 6.19^{\rm o}; \, \phi_{\rm G} = 353.12^{\rm o}; \, h = 2.8525]$

۵	x/ħ,	(y/h)+ 0.1206	Velocity, v (v _n =0.5; B=-0.38907)						
(deg)		(ordinate)	c _l =0 A=0.03038	0.3 0.30445	0.6 0.57852	0.9 0.86269			
	Upper duct-inlet section								
0 x 7,5 2 3 4 5 6 7 8 9 10 11 12 18 14 16 16 17 18 19 20 21 22 23 24	8. 6137 6094 1545 1546 0444 0019 0009 0302 0489 0727 0943 1194 1485 1781 2399 2778 3240 3751 5200 6302	0.1208 7002 9997 7522 6176 5283 4788 4427 4167 3964 4427 3857 3807 3680 3540 3534 3527 3404 3534 3527 3604 3604 3707 3607	1. 0000 1. 0655 1. 3818 1. 2524 9328 6065 1917 1527 3887 5511 6559 7284 7050 7217 6929 6717 6350 6203 6039 5550 5445 1. 3891	1. 0000 1. 1088 1. 1028 1. 4466 1. 4466 1. 1822 9.911 1. 1260 1. 1260	1. 0000 1. 1481 1. 6226 1. 6408 1. 4817 1. 2316 8396 4419 1366 0360 2491 4567 5151 5370 5461 55687 5588 5773 5347 1. 3891	1,0000 1,1895 1,7450 1,8350 1,6813 1,5442 1,1636 3093 3093 3093 1,466 0,465 3023 4278 4278 4428 4428 4527 4726 5040 5162 5279 5363 5134 5277 1,3891			
		Lower	duct-inlet se	ection		<u> </u>			
24 225 227 229 230 31 32 230 331 333 34 41 42 44 44 45 46 47	0. 8390 6887 5423 4716 4130 3702 3832 3832 2782 2587 2411 2215 2182 2190 2234 2702 234 2100 234 2609 2712 2115 2116 2116 2116 2116 2116 2116 21	-0, 2800 -4801 -4708 -4701 -4701 -4075 -4045 -4635 -4635 -4635 -4636 -4635 -4636 -4636 -4636 -4636 -4636 -4636 -4636 -4636 -4636 -4636 -4636 -4701 -5048 -5261 -5262 -5882 -5882 -7389 -8617 -1, 1091 -8096	1. 3891 5384 5788 5788 5798 5890 5967 6028 6165 6328 6221 5067 2602 0828 3905 6176 7928 9902 1,0874 1,1876 1,2884 1,0658	1. 3891. 5485. 5491. 5693. 6145. 6299. 6504. 6735. 7030. 7490. 8140. 8744. 8744. 8744. 8000. 3270. 6215. 3004. 8144. 8060. 1, 077. 6114. 8060.	1. 3891 .5526 .5638 .6228 .6492 .6763 .7108 .8033 .8115 .9953 1. 1266 1. 1665 1. 1665 1. 0597 .7367 .3635 .0168 .2436 .4557 .6215 .7388 .9471 1. 0039 .9924	1, 3891 .5084 .6784 .6839 .7226 .7713 .8229 .0036 1, 1785 1, 1484 .7286 .3339 .0236 .2399 .3399 .0300 .3309 .3309 .3009 .3009 .3009 .3009 .3058			

TABLE V-ORDINATES OF NON-SYMMETRICAL DUCT INLET WITH s=0.280 AND m=3.0

[n=1.5; r=0.0810; h=2,6613]

(deg)	(dog)	x/lı	(y/h) + 0.1806 (ordinate)
	Upper due	t inlet section	1
0 x 7.5 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 12 22 22 23 24	0 5. 004 10. 032 15. 108 20. 256 25. 503 30. 874 30. 874 30. 318 42. 103 48. 021 54. 184 60. 025 67. 483 81. 969 88. 218 107. 018 116. 298 120. 081 136. 207 146. 773 157. 688 168. 770 189, 000	6, 4980 1, 1177 30 3 1, 1177 30 3 1, 10002 1, 1300 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10074 1, 10077 1, 100	0. 1806 7519 1. 0729 8077 6632 5682 5145 4759 4481 4252 4004 3066 3880 3800 3801 3809 3830 3801 3801 3801 3801 3801 3801 3801 3801 3801 3801 3801
	<u> </u>	t inlet section	l
24 225 220 27 28 29 30 31 32 38 38 38 38 38 38 38 38 40 41 41 42 43 44 44 46 47	180, 000 191, 230 202, 342 213, 227 223, 793 233, 909 243, 707 252, 982 281, 787 270, 130 278, 031 285, 517 292, 620 299, 378 305, 816 311, 979 317, 897 328, 602 329, 126 334, 497 330, 744 344, 892 849, 908 854, 996	0. 9017 . 7664 . 6518 . 6779 . 6222 . 4817 . 4473 . 4232 . 4024 . 3896 . 8702 . 8799 . 3825 . 8799 . 3826 . 7176 . 9830 . 9837 . 9837 . 9837 . 9837 . 9837 . 9837 . 1169	-0. 2451 5197 5097 5096 5025 4996 4998 4984 4984 4984 4985 5025 5111 5239 5339 5339 5339 5368 5904 6290 6827 7777 9222 -1. 1874 8604